Stereoselective Total Synthesis of (11β) -11-Methoxycurvularin

by Karuturi Rajesh, Vangaru Suresh, Jondoss Jon Paul Selvam, Dokuburra Chanti Babu, and Yenamandra Venkateswarlu*

Natural Products Laboratory, Organic Chemistry Division – I, Indian Institute of Chemical Technology, Hyderabad – 500007, India

(phone: +91-40-27193167; fax: +91-40-27160512; e-mail: luchem@iict.res.in)

A simple and highly efficient stereoselective total synthesis of (11β) -11-methoxycurvularin (5), a polyketide natural product, was achieved. The synthesis commenced with a Cu-mediated regioselective opening of (2S)-2-methyloxirane (6) and comprised a *Keck* asymmetric allylation and intramolecular *Friedel-Crafts* acylation as key steps (*Scheme 2*).

Introduction. – Fungal macrolides, such as curvularins, have recently attracted attention due to their interesting biological activities [1]. These secondary metabolites were found to be inhibitors of HSP90 [2], a promising target for anticancer drug discovery [3]. The curvularins, *e.g.*, compounds 1-5, are octaketides composed of a 12-membered macrolide skeleton fused to a 1,3-dihydroxybenzene moiety (*Fig.*). The (11 α)-11-methoxycurvularin¹) (4) and (11 β)-11-methoxycurvularin¹) (5) are members of the curvularin family isolated from the mycelium of the hybrid strain ME 005 derived from *Penicillium citreoviride* 4692 and 6200 [4]. They were shown to have considerable cytotoxicity toward a panel of four human-cancer cell lines (NCI-H460, MCF-7, SF-268, MIA, and Pa Ca-2) [5]. Also, they were shown to inhibit sea urchin embryogenesis by acting on components of the mitotic apparatus [6]. The potential biological importance as well as the unique structural feature of these molecules prompted by *She*, *Pan*, and co-workers to synthesize and determine the absolute configuration of (11 α)-11-methoxycurvularin (4) and (11 β)-11-methoxycurvularin (5), by a stereoselective pathway [7].

In continuation of our work on the synthesis of biologically active natural products [8], we report herein an efficient straightforward and practical total synthesis of (11β) -11-methoxycurvularin (5) starting from commercially available starting materials. Our planned approach to 5 involved an intramolecular *Friedel-Crafts* acylation of 12 resulting in the macrolide-ring formation, a catalytic asymmetric allylation and a regioselective Cu-mediated opening of oxirane 6 as key steps (*Scheme 1*).

Results and Discussion. – The synthesis of (11β) -11-methoxycurvularin (**5**) initiated (*Scheme 2*) from commercially available oxirane **6**, which was subjected to a CuCN-mediated regioselective nucleophilic opening [9] with allylmagnesium chloride to provide an alcohol in 87% yield which was protected as its 'BuMe₂Si ether by reaction with 'BuMe₂SiCl (*tert*-butyldimethylsilyl chloride) to obtain **7** (*Scheme 2*). Protected **7**, on selective hydroboration with 9-BBN-H (=9-borabicyclo[3.3.1]nonane) in THF,

^{© 2010} Verlag Helvetica Chimica Acta AG, Zürich

Figure. Curvularin (1), (11α)-11-hydroxycurvularin (2), (11β)-11-hydroxycurvularin (3), (11α)-11methoxycurvularin (4), and (1β)-11-methoxycurvularin (5¹)

followed by treatment with NaOH and H_2O_2 , gave alcohol **8** in 90% yield [10]. The primary-alcohol function in **8** was oxidized with IBX (2-iodoxybenzoic acid) in DMSO to afford the corresponding aldehyde which was subjected to catalytic asymmetric allylation with allyltributylstannane, a procedure developed by *Keck* and co-workers [11], to furnish the homoallylic alcohol **9** in 80% yield with an excellent diastereo-selectivity of 95% de (as determined by ¹H-NMR analysis). The homoallylic alcohol **9**, on treatment with MeI/NaH, afforded methyl ether **10**. The 'BuMe₂Si group in **10** was removed with 1M Bu₄NF in THF at room temperature to give **11** in 97% yield, which was esterified with 3,5-dimethoxybenzeneacetic acid in the presence of dicyclohexylcarbodiimide (DCC) and *N*,*N*-dimethylpyridin-4-amine (DMAP) [12] to give ester **12** in 95% yield. Ozonolysis of the olefin moiety in **12** followed by further oxidation with NaClO₂ and NaH₂PO₄ gave the corresponding acid **13** in 90% yield. The desired

¹⁾ Trivial atom numbering; for systematic names, see Exper. Part.

macrolide **14** was obtained in 41% yield by intramolecular *Friedel*–*Crafts* reaction of the carboxylic acid **13** with CF₃COOH/(CF₃CO)₂O (at 25° for 8 h) [13]. Demethylation of **14** with freshly prepared AlI₃ at 10° for 45 min gave the target molecule **5** [14] in 96% yield.

a) Allyl chloride, Mg, CuCN, THF, 0° to r.t., overnight. *b*) 'BuMe₂SiCl, 1*H*-imidazole, CH₂Cl₂, 0°, 4 h; 98%. *c*) 9-BBN-H, THF, 40°, 4 h; NaOH, H₂O₂; 90%. *d*) 1. IBX, DMSO, CH₂Cl₂, 3 h; 90%; 2. (*R*)-BINOL (=(*R*)-[1,1'-binaphthalene]-2,2'-diol), 4-Å molecular sieves, Ti(OⁱPr)₄, allyltributylstannane, CH₂Cl₂, -78° to -20°; 80%. *e*) MeI, NaH, THF, r.t., 3 h; 85%. *f*) Bu₄NF, THF, r.t., 8 h; 97%. g) DCC, DMAP, Et₂O, r.t.; 95%. *h*) O₃, Ph₃P, CH₂Cl₂, -78°. *i*) NaClO₂, NaH₂PO₄; 90%. *j*) CF₃COOH, (CF₃COO)₂O, r.t., 8 h; 41%. *k*) AlI₃, Bu₄NI, benzene, 10°; 96%.

In conclusion, an efficient and straightforward total synthesis of (11β) -11methoxycurvularin (5) was achieved by Cu-mediated regioselective oxirane opening, selective hydroboration, *Keck* asymmetric allylation, and *Friedel – Crafts* acylation as key reactions. The synthetic way of proceeding described here has a significant potential for the synthesis of a variety of other biologically important substituted 1,5polyol-containing natural products.

Experimental Part

General. Solvents were dried over standard drying agents and freshly distilled prior to use. The reagents were purchased from *Aldrich* and *Acros* and used without further purification unless otherwise stated. The (2*S*)-2-methyloxirane (**6**) was purchased from *Aldrich*. All moisture-sensitive reactions were carried out under N₂. Org. solns. were dried (Na₂SO₄) and concentrated below 40°. Column chromatography (CC): silica gel (60–120 mesh; *Acme Synthetic Chemicals*). Optical rotations: *Horiba* high-sensitive polarimeter *SEPA-300*; at 25°. IR Spectra: *Perkin-Elmer-IR-683* spectrophotometer with NaCl optics; $\tilde{\nu}$ in cm⁻¹. ¹H- (200 and 300 MHz) and ¹³C-NMR (50 and 75 MHz) Spectra: *Varian-Gemini*-

FT-200 and *Bruker-Avance-300* instrument; δ in ppm rel. to Me₄Si as internal standard, J in Hz. MS: *Agilent Technologies 1100* series instrument (*Agilent* ChemiStation software); in m/z (rel. %).

(1,1-Dimethylethyl)dimethyl[[(1S)-1-methylpent-4-en-1-yl]oxy]silane (7). To a suspension of Mg (0.74 g, 30.5 mmol) in dry THF (25 ml) at r.t. (condenser with cool-water circulation) allyl chloride (2.17 ml, 30.5 mmol) was added dropwise, followed by CuCN (68.5 mg, 0.76 mmol). The mixture was stirred for 0.5 h. Then, the mixture was cooled to 0° , optically pure (2S)-2-methyloxirane (6; 0.88 g, 15.2 mmol) in THF (3.3 ml) was added, and the mixture was warmed to r.t. and stirred overnight at r.t. The reaction was quenched with sat. NH_4Cl soln. (15 ml), the mixture extracted with AcOEt (3 × 10 ml), and the combined extract washed with brine (10 ml), dried (Na_2SO_4) , and concentrated to yield the crude alcohol which was directly used for the next reaction without purification. To the crude alcohol in dry CH₂Cl₂, sequentially 1H-imidazole (2.258 g, 33.19 mmol) and 'BuMe₂SiCl (2.27 g, 15.06 mmol) were added at r.t., and the mixture was stirred for 16 h. After completion of the reaction, the mixture was diluted with H₂O (5 ml) and extracted with CH₂Cl₂ (2 \times 10 ml). The org. phase was washed with brine $(1 \times 5 \text{ ml})$, dried (Na_2SO_4) , and concentrated and the crude product subjected to CC (AcOEt/hexane 1:9): 7 (2.74 g, 85% over the two steps). Clear liquid. $[\alpha]_{D}^{20} = +8.9$ (c = 1.88, CHCl₃). IR (neat): 2940s, 2860m, 1640m, 1254m, 1090s, 997m, 834s, 777m. ¹H-NMR (CDCl₃, 300 MHz): 5.71-5.90 (m, 1 H); 4.90-5.07 (m, 2 H); 3.74–3.83 (m, 1 H); 2.05–2.20 (m, 2 H); 1.48–1.56 (m, 2 H); 1.1 (d, J=6.6, 3 H); 0.8 (s, 9 H); 0.04 (s, 6 H). ¹³C-NMR (CDCl₃, 75 MHz): 138.4; 114.7; 71.24; 39.38; 30.6; 27.88; 25.86; 18.07; -4.41. LC-MS: 215 ([M+1]⁺).

(5S)-5-{[(1,1-Dimethylethyl)dimethylsily]]oxy]hexan-1-ol (8). To a soln. of 7 (2.5 g, 11.68 mmol, 1 equiv.) in dry THF (100 ml) was added a soln. of 1M 9-BBN-H in THF (12.84 ml, 12.84 mmol, 1.1 equiv.), and the soln. was refluxed for 4 h. Then, the mixture was cooled to r.t., and 2M aq. NaOH (15 ml) was added, followed by 30% aq. H₂O₂ soln. (15 ml). The mixture was stirred for 12 h at r.t. After completion of the reaction, Et₂O (50 ml) was added, and the aq. layer further extracted with Et₂O (3 × 50 ml). The combined org. phase was dried (Na₂SO₄) and concentrated, and the crude material purified by CC (AcOEt/hexane 1:4): 8 (2.43 g, 90%). Colorless oil. $[\alpha]_{20}^{20} = + 11.2$ (c = 1.2, CHCl₃). IR (neat): 3346s, 2933s, 2864m, 1465m, 1254m, 1102m, 837m, 775m. ¹H-NMR (CDCl₃, 300 MHz): 3.72–3.8 (m, 1 H); 3.61 (t, 2 H); 1.99 (br. s, 1 H); 1.44–1.57 (m, 4 H); 1.25–1.41 (m, 2 H); 1.10 (d, J = 6.8, 3 H); 0.88 (s, 9 H); 0.04 (s, 6 H). ¹³C-NMR (CDCl₃, 75 MHz): 71.30; 63.1; 39.38; 31.6; 26.0; 25.86; 19.2; 18.07; -4.41. LC-MS: 233 ($[M + 1]^+$).

(4R,8S)-8-{[(1,1-Dimethylethyl)dimethylsilyl]oxy]non-1-en-4-ol (9). A soln. of IBX (4.43 g, 15.71 mmol) in dry DMSO was stirred for 30 min. Then, a soln. of 8 (2.43 g, 10.47 mmol) in CH₂Cl₂ (50 ml) was added at r.t., and the mixture was stirred for 5 h at r.t. After completion of the reaction, the mixture was filtered and the filtrate diluted with $H_2O(50 \text{ ml})$ and extracted with $CH_2Cl_2(2 \times 50 \text{ ml})$. The combined org. phase was washed with brine (20 ml), dried (Na₂SO₄), and concentrated, and the crude aldehyde purified by CC (AcOEt/hexane 1:9) to give the aldehyde (2.2 g, 92%) as a colorless liquid which was directly used for the next reaction. A mixture of (R)-BINOL (0.27 g, 0.94 mmol) and $Ti(O^{i}Pr)_{4}$ (0.27 g, 0.95 mmol) in CH₂Cl₂ (30 ml) in the presence of 4-Å molecular sieves (2 g) was stirred under reflux. After 1 h, the mixture was cooled to r.t., the previously prepared aldehyde (2.2 g, 9.56 mmol) in CH_2Cl_2 added, and the resulting mixture stirred for 10 min. The mixture was then cooled to -78° , allyltributylstannane (3.79 g, 11.45 mmol) was added, and the mixture was stirred for 36 h at -20° . After completion of the reaction, the reaction was quenched with sat. NaHCO₃ soln. (5 ml), and the mixture stirred for an additional 30 min and then extracted with CH₂Cl₂ (40 ml). The org. phase was washed with H₂O (15 ml), dried (Na₂SO₄), and concentrated, and the residue purified by CC (AcOEt/hexane 2:8):9 (2.08 g, 80%). Clear liquid. $[a]_{20}^{20} = +2.3$ (c = 1.88, CHCl₃). IR (neat): 3440s, 2930s, 2857m, 1637m, 1463m, 1373m, 1252m, 1134m, 1042m, 999m, 912w, 834m, 772s, 661w. ¹H-NMR (CDCl₃, 300 MHz): 5.81-5.71 (m, 1 H); 5.09-5.05 (m, 2 H); 3.78-3.70 (m, 1 H); 3.59-3.53 (m, 1 H); 2.26-2.20 (m, 1 H); 2.17-2.04 (m, 1 H); 1.49–1.12 (m, 6 H); 1.08 (d, J = 6.59, 3 H); 0.84 (s, 9 H); 0.08 (s, 6 H). ¹³C-NMR (CDCl₃, 75 MHz): 134.83; 118.08; 70.53; 68.46; 41.9; 39.55; 36.76; 25.88; 23.72; 21.73; 18.13; -4.41. LC-MS: 273 $([M+1]^+).$

(1,1-Dimethylethyl)[[(15,5R)-5-methoxy-1-methyloct-7-en-1-yl]oxy]dimethylsilan (10). To a stirred soln. of 60% NaH in oil suspension (0.55 g, 22.92 mmol) in dry THF (10 ml) was added slowly 9 (2.08 g, 7.64 mmol) in dry THF (20 ml), followed by MeI (1.19 g, 8.4 mmol). The mixture was stirred at r.t. for

4 h. After completion, the reaction was quenched with cold H_2O , and the mixture extracted with AcOEt (3 × 50 ml). The combined org. phase was washed with brine, dried (Na₂SO₄), and concentrated, and the crude material purified by CC (AcOEt/hexane 1:9): **10** (2.07 g, 95%). Colorless oil. [*a*]₂₅²⁵ = +5.2 (*c* = 1.1, CHCl₃). IR (neat): 2925*s*, 2856*s*, 1639*m*, 1461*m*, 1373*m*, 1252*m*, 1218*m*, 1099*m*, 911*w*, 834*m*, 772*s*. ¹H-NMR (CDCl₃, 300 MHz): 5.88-5.74 (*m*, 1 H); 5.11-5.03 (*m*, 2 H); 3.8-3.74 (*m*, 1 H); 3.34 (*s*, 3 H); 3.24-3.16 (*m*, 1 H); 2.28-2.23 (*m*, 2 H); 1.5-1.25 (*m*, 6 H); 1.15 (*d*, *J* = 6.59, 3 H); 0.88 (*s*, 9 H); 0.04 (*s*, 6 H). ¹³C-NMR (CDCl₃, 75 MHz): 134.96; 116.86; 80.49; 68.52; 56.56; 39.94; 37.94; 33.61; 26.09; 23.96; 21.51; 18.26; -4.41. LC-MS: 287 ([*M*+1]⁺).

(2S,6R)-6-*Methoxynon-8-en-2-ol* (**11**). To a cooled (0°) soln. of **10** (2.07 g, 7.23 mmol) in dry THF (8 ml), 1M Bu₄NF (7.23 mmol) in THF (7.2 ml), was added, and the mixture was stirred for 3 h at r.t. After completion, the reaction was quenched with H₂O (2 ml), and the mixture extracted with AcOEt (2 × 10 ml). The combined org. phase was dried (Na₂SO₄) and concentrated, and the crude material purified by CC (AcOEt/hexane 2 :8): **11** (1.18 g, 95%). Viscous liquid. $[a]_D^{2D} = -0.2$ (c = 1.88, CHCl₃). IR (neat): 3445s, 2939s, 2840m, 1635m, 1463m, 1354m, 1243m, 1142m, 998m, 913w, 843m, 762s, 643w. ¹H-NMR (CDCl₃, 300 MHz): 5.81–5.7 (m, 1 H); 5.06–5.0 (m, 2 H); 3.75–3.69 (m, 1 H); 3.31(s, 3 H); 3.2–3.14 (m, 1 H); 2.37 (br. s, 1 H); 2.29–2.17 (m, 2 H); 1.5–1.25 (m, 6 H); 1.15 (d, J = 6.64, 3 H). ¹³C-NMR (CDCl₃, 75 MHz): 134.7; 116.82; 80.32; 67.82; 56.43; 39.21; 37.55; 33.19; 23.34; 21.35. LC-MS: 173 ([M + 1]⁺).

(1S,5R)-5-Methoxy-1-methyloct-7-en-1-yl 3,5-Dimethoxybenzeneacetate (12). To a stirred soln. of 11 (0.2 g, 1.16 mmol) in CH₂Cl₂ (10 ml) at 0° was added DCC (0.355 g, 1.74 mmol), followed by a cat. amount of DMAP. After 5 min, 3,5-dimethoxybenzeneacetic acid (0.25 g, 1.27 mmol) was added, and the mixture stirred for 17 h at r.t. H₂O (10 ml) was added, the mixture extracted with CH₂Cl₂ (20 ml), the org. layer washed successively with 10% aq. HCl soln., sat. NaHCO₃ soln., and brine, dried (Na₂SO₄), and concentrated, and the residue purified by CC (AcOEt/hexane 1:10): **12** (0.386 g, 95%). $[\alpha]_D^{20} = -0.2$ (c = 1.0, CHCl₃). IR (KBr): 2932s, 1729s, 1599s, 1462m, 1431w, 1293w, 1203m, 1154s, 1096m, 996w, 914w, 847w, 71w. ¹H-NMR (CDCl₃, 300 MHz): 6.36 (d, J = 2.54, 2 H); 6.27 (d, J = 2.54, 1 H); 5.77 – 5.66 (m, 1 H); 5.02 – 4.98 (m, 2 H); 4.9 – 4.83 (m, 1 H); 3.73 (s, 6 H); 3.45 (s, 2 H); 3.26 (s, 3 H); 3.10 – 3.04 (m, 1 H); 2.2 – 2.0 (m, 2 H); 1.59 – 1.24 (m, 6 H); 1.19 (d, J = 6.78, 3 H). ¹³C-NMR (CDCl₃, 75 MHz): 170.33; 160.73; 136.1; 134.74; 116.84; 107.05; 99.14; 80.12; 70.94; 56.39; 54.95; 42.01; 37.68; 35.96; 33.08; 21.0; 19.99. HR-ESI-MS: 373.1999 ([M + Na]⁺, C₂₀H₃₀NaO⁺₅; calc. 373.1990).

(1S,5R)-6-Carboxy-5-methoxy-1-methylhexyl 3,5-Dimethoxybenzeneacetate (13). Through a soln. of 12 (0.386 g, 1.1 mmol) in CH₂Cl₂ (2 ml) at -78° , ozone was bubbled. After completion of the reaction, the mixture was purged with N_2 to remove the excess of ozone and cooled to 0°. Then Ph_3P (0.57 g, 2.2 mmol) was added and the mixture stirred for 2 h. The mixture was concentrated. After adding hexane, the mixture was filtered through a Celite pad, the pad washed with hexane, and the filtrate concentrated to yield crude aldehyde which was subjected to the next step without further purification. To a stirred soln. of the crude aldehyde in 'BuOH (1 ml) was added 2-methylbut-2-ene (0.5 ml) in 'BuOH (0.5 ml). The mixture was cooled to 0° and treated with a soln. of NaClO₂ (0.086 g, 0.95 mmol) and NaH₂PO₄ (0.344 g, 2.87 mmol) in H₂O (1 ml). After 5 h, the mixture was diluted with brine (5 ml) and Et₂O (10 ml). The aq. phase was extracted with Et₂O, the combined org. phase washed with brine, dried (Na₂SO₄), and concentrated, and the residue purified by CC (AcOEt/hexane 3:7): 13 (0.12 g, 90%). $[\alpha]_{20}^{20} = +14$ (c = 0.8, CHCl₃). IR (KBr): 2937s, 1729s, 1598s, 1461m, 1204m, 1205s, 1156s, 1065w, 835w. ¹H-NMR (CDCl₃, 300 MHz): 6.43 (s, 2 H); 6.36 (s, 1 H); 4.91 (dd, J = 12.3, 6.6, 1 H); 3.77 (s, 6 H); 3.57 (dd, J = 12.3, 5.7, 1 H); 3.51 (s, 2 H); 3.33 (s, 3 H); 2.51 (dd, J = 15.9, 6.9, 1 H); 2.40 (dd, J = 15.9, 4.8, 1 H);1.64 - 1.40 (m, 4 H); 1.35 - 1.25 (m, 2 H); 1.2 (d, J = 6.7, 3 H). ¹³C-NMR (CDCl₃, 75 MHz): 176.7; 171.0; 167.1; 160.7; 136.3; 107.2; 99.0; 77.4; 71.2; 56.8; 55.3; 42.0; 38.9; 35.7; 33.3; 20.8; 19.9. HR-ESI-MS: 391.1740 ($[M + Na]^+$, $C_{19}H_{28}NaO_7^+$; calc. 391.1732).

(4S,8R)-4,5,6,7,8,9-Hexahydro-8,11,13-trimethoxy-4-methyl-2H-3-benzoxacyclododecin-2,10(1H)-dione (14). Under N₂, 13 (80 mg, 0.22 mmol) was dissolved in CF₃COOH (6 ml) and (CF₃CO)₂O (1 ml). The soln. was stirred overnight at r.t. and poured into an excess of NaHCO₃ soln. The mixture was extracted with Et₂O (3×5 ml), the extract dried (Na₂SO₄) and concentrated, and the residue purified by CC (hexanes/AcOEt 5 :1): 14 (32 mg, 42%). Colorless oil. [a]_D^{2D} = -9 (c = 0.7, CHCl₃). IR (neat): 3385w, 2934s, 1724s, 1655w, 1603s, 1458m, 1313m, 1157s, 1084m. ¹H-NMR (CDCl₃, 300 MHz): 6.49 (s, 1 H); 6.40 (s, 1 H); 6.25 (d, J = 15.6, 1 H); 4.88 (t, J = 6.3, 1 H); 3.83 (s, 2 H); 3.82 (s, 3 H); 3.73 (s, 3 H); 3.33 (d, J = 18.6, 3 H); 2.33 (t, J = 6.9, 1 H); 2.18 (t, J = 6.8, 1 H); 1.92 - 1.75 (m, 2 H); 1.53 - 1.38 (m, 4 H); 1.15 (d, J = 6.3, 3 H).¹³C-NMR (CDCl₃, 75 MHz): 198.5; 170.5; 160.9; 157.5; 156.5; 133.2; 132.8; 122.5; 106.5; 97.8; 72.9; 55.8; 55.6; 55.4; 39.5; 34.2; 34.1; 24.4; 20.3. HR-MS-ESI: 373.1629 ([M + Na]⁺, C₁₉H₂₆NaO₆⁺; 373.1627).

(4S,8R)-4,5,6,7,8,9-*Hexahydro-11,13-dihydroxy-8-methoxy-4-methyl-*2H-3-*benzoxycyclododecin-2,10(1*H)-*dione* (**5**). To a soln. of I₂ (477 mg, 1.87 mmol) in dry benzene (4 ml) was added Al powder (67 mg, 2.51 mmol). The mixture was refluxed for 0.5 h and cooled to 10°. Then Bu₄NI (2 mg) and **14** (22 mg, 0.06 mmol) in dry benzene (2 ml) were added. The mixture was stirred for 15 min at 10° and quenched with 2M HCl at 0°. The mixture was then extracted with AcOEt (3 × 20 ml), the org. phase washed with NaHCO₃ soln. and brine, dried (Na₂SO₄), and concentrated, and the residue purified by CC (hexane/AcOEt 2 : 1): **5** (13.5 mg, 68%). Colorless oil. $[a]_{D}^{20} = -6$ (c = 0.2 EtOH). IR (neat): 3402*s*, 2923*s*, 1959*m*, 1712*s*, 1655*w*, 1614*s*, 1461*m*, 1403*m*, 1270*m*, 1175*s*, 1083*m*. ¹H-NMR (CDCl₃, 300 MHz): 8.98 (s, 1 H); 6.94 (s, 1 H); 6.34 (d, J = 2.4, 1 H); 5.97 (d, J = 2.4, 1 H); 5.13 (t, J = 6.0, 1 H); 3.95 (d, J = 15.9, 1 H); 3.78 (d, J = 14.1, 1 H); 3.59 (d, J = 16.5, 1 H); 3.33 (d, J = 5.2, 1 H); 3.25 (s, 3 H); 3.13 (dd, J = 14.1, 8.1, 1 H); 1.87 – 1.55 (m, 6 H); 1.25 (d, J = 5.2, 3 H). ¹³C-NMR (CDCl₃, 75 MHz): 204.3; 172.1; 159.6; 159.4; 135.6; 118.3; 113.2; 102.7; 75.7; 72.3; 54.2; 49.4; 40.2; 31.2; 30.5; 18.8; 17.9. HR-MS: 345.1312 ($[M + Na]^+$, C₁₇H₂₂NaO⁺₆; calc. 345.1309).

REFERENCES

- W. H. Urry, H. L. Wehrmeister, E. B. Hodge, P. H. Hidy, *Tetrahedron Lett.* **1966**, *7*, 3109; R. N. Mirrington, E. Ritchie, C. W. Shoppee, W. C. Taylor, S. Sternhell, *Tetrahedron Lett.* **1964**, *5*, 365; N. Winssinger, S. Barluenga, *Chem. Commun.* **2007**, 22; A. J. Birch, O. C. Musgrave, R. W. Rickards, H. Smith, *J. Chem. Soc.* **1959**, 3146.
- [2] S. V. Sharma, T. Agatsuma, H. Nakano, Oncogene 1998, 16, 2639; T. Agatsuma, Y. Kanda, H. Onodera, M. Hideyuki, N. Matsushita, T. S. Ogawa, S. Akinaga, S. Soga, to Kyowa Hakko Kogyo Co., Ltd. Japan, WO 2004024141 A1 20040325, 2004.
- [3] Y. L. Janin, J. Med. Chem. 2005, 48, 7503.
- [4] S. Lai, Y. Shizuri, S. Yamamura, K. Kawai, H. Furukawa, Bull. Chem. Soc. Jpn. 1991, 64, 1048.
- [5] J. He, E. M. K. Wijeratne, B. P. Bashyal, J. Zhan, C. J. Seliga, M. X. Liu, E. E. Pierson, L. S. Pierson III, H. D. VanEtten, A. A. L. Gunatilaka, *J. Nat. Prod.* 2004, 67, 1985; J. Zhan, E. M. K. Wijeratne, C. J. Seliga, E. E. Pierson, L. S. Pierson III, H. D. VanEtten, A. A. L. Gunatilaka, *J. Antibiot.* 2004, 57, 341.
- [6] A. Kobayashi, T. Hino, S. Yata, T. J. Itoh, H. Sato, K. Kawazu, Agric. Biol. Chem. 1988, 52, 3119.
- [7] Q. Liang, Y. Sun, B. Yu, X. She, X. Pan, J. Org. Chem. 2007, 72, 9846.
- [8] V. Suresh, J. Jon Paul Selvam, K. Rajesh, Y. Venkateswarlu, *Tetrahedron: Asymmetry* 2008, 19, 1509;
 V. Suresh, K. Rajesh, J. Jon Paul Selvam, Y. Venkateswarlu, *Tetrahedron Lett.* 2008, 49, 7358.
- [9] L. Poppe, K. Recseg, L. Novák, Synth. Commun. 1995, 25, 3993.
- [10] C. Dubost, I. E. Markó, T. Ryckmans, Org. Lett. 2006, 8, 5137.
- [11] G. E. Keck, K. H. Tarbet, L. S. Geraci, J. Am. Chem. Soc. 1993, 115, 8467; G. E. Keck, D. Krishnamurthy, M. C. Grier, J. Org. Chem. 1993, 58, 6543; N. Gogoi, J. Boruwa, N. C. Barua, Eur. J. Org. Chem. 2006, 1722.
- [12] P. M. Baker, B. W. Bycroft, J. C. Roberts, J. Chem. Soc. C 1967, 1913.
- [13] F. Bracher, B. Schulte, Liebigs Ann. Recl. 1997, 1979.
- [14] A. T. Kreipl, C. Reid, W. Steglich, Org. Lett. 2002, 4, 3287.

Received April 22, 2009